{ListeTraductions,#GET{ListeTraductions},#ARRAY{#LANG,#URL_ARTICLE}}
 

Introduction to many-body physics of fermions and bosons

Accès rapides

Accès rapides

Prochain Séminaire de la FIP :
Accéder au programme

Retrouvez toutes les informations pour vos stages :
Stages L3
Stages M1 ICFP

Actualités : Séminaire de Recherche ICFP
du 14 au 18 novembre 2022 :

Retrouvez le programme complet

Contact - Secrétariat de l’enseignement :
Tél : 01 44 32 35 60
enseignement@phys.ens.fr

r>

Faculty  : Pascal Simon and Michele Casula

ECTS credits : 3

Language of instruction  : English

Examination : A face-to-face oral exam (with 15 to 20 minutes preparation time) on a question from the course and an exercise to solve on the board

Covid-19 alternative examination : Oral exam in remote mode covering a topic question (without preparation) from which a discussion on various concepts covered in the course will be initiated.

Description :
Description
This course aims at introducing modern methods of many-body theory to M2 students. After some general motivations, we will lay the foundation of many-body physics by presenting fundamental tools such as Green functions and diagrammatic expansions formalisms. We will apply these tools to some concrete examples in condensed matter physics and cold atoms in order to connect the theoretical framework to standard observables. Finally, the course will give an overview on the latest numerical developments in the field.
Outlook of the course :
0) General introduction and some reminder.
Strong local interaction ; role of dimensionality of particle statistics
I) Green function formalism
- Green function at T=0. Application to free fermions.
- The resonant level model and Friedel oscillations.
- Spectral representations.
- Finite temperature Matsubara Green functions
II) Introduction to Feynman diagrams
- Interaction representation and Wick theorem
- Perturbative expansion of Green functions and Feynman diagrams
- Application to electron-phonon interaction
- Application to electron-electron interaction
III) Introduction to quantum impurity models
- Anderson model and various limiting cases
- Feynman diagrams in the Anderson model.
- Application to transport in quantum dots.
IV) Phenomenology of the Fermi liquid.
- Notion of quasi-particle excitation
- Self-energy and spectral consequences
V) Dynamical Mean Field Theory
- Bethe lattice
- Lattice Embedding to a Quantum impurity model
- Hubbard model from a dynamical mean field perspective
- Mott transition
- Critical exponents
VI) Many-body theories for ab initio calculations
- Hedin’s equations
- GW approximation
- Bosonic degrees of freedom : plasmons and phonons
Examination : oral exam

Accès rapides

Prochain Séminaire de la FIP :
Accéder au programme

Retrouvez toutes les informations pour vos stages :
Stages L3
Stages M1 ICFP

Actualités : Séminaire de Recherche ICFP
du 14 au 18 novembre 2022 :

Retrouvez le programme complet

Contact - Secrétariat de l’enseignement :
Tél : 01 44 32 35 60
enseignement@phys.ens.fr

r>