{ListeTraductions,#GET{ListeTraductions},#ARRAY{#LANG,#URL_ARTICLE}}
 

Introduction to General Relativity

Accès rapides

Accès rapides

Prochain Séminaire de la FIP :
Accéder au programme

Retrouvez toutes les informations pour vos stages :
Stages L3
Stages M1 ICFP

Actualités : Séminaire de Recherche ICFP
du 14 au 18 novembre 2022 :

Retrouvez le programme complet

Contact - Secrétariat de l’enseignement :
Tél : 01 44 32 35 60
enseignement@phys.ens.fr

r>

Lectures : Marios Petropoulos
Exercises : Vadim Briaud
ECTS credits : 6
Language of instruction : English

SUMMARY
This course aims at presenting an introduction to general relativity. A substantial part of it relies on differential geometry, which will be developed at an early stage. Field equations and equations of motion of test particles will be discussed next, together with their Newtonian limits. The spherically symmetric and static Schwarzschild solution will be worked out, interpreted and used to set the fundamental tests of general relativity (Mercury perihelion advance, deflection of light, Shapiro effect, gravitational redshift etc). Black-hole properties, cosmological evolution and gravitational waves will also be studied. The last part of the course will be devoted to differential forms, exterior calculus and Cartan’s formalism.

PREREQUISITE KNOWLEDGE AND ORGANIZATION
Special relativity and basics on affine spaces. This can be found in any modern textbook – see bibliography.

Lectures take place at the ENS, rue Lhomond, room E314 from 8:30 to 10:30,
followed by TDs from 10:45 to 12:45.

A homework will be due around November.

The exam (written with notes and working documents) is scheduled for Thursday
February 8, 2024.

KEY-WORDS
Differential geometry, gravitation.

BIBLIOGRAPHY
1. Modern textbooks in French :
1. David Langlois, Relativité génerale, Vuibert – level M1.
2. Nathalie Deruelle et Jean-Philippe Uzan, Théories de la Relativité,
Belin – level M2.

2. Modern textbooks in English :
1. Sean M. Carroll, An Introduction to General Relativity – Spacetime and
Geometry, Addison Wesley.
2. James B. Hartle, Gravity – An Introduction to Einstein’s General
Relativity, Addison Wesley.
3. Antony Zee, Einstein Gravity in a Nutshell, Princeton University Press.

3. Classics :
1. Lev Landau et Evguéni Lifchitz, Physique Théorique vol. 2 Théorie des
champs, MIR. 1

2. Steven Weinberg, Gravitation and cosmology – Principles and
Applications of the General Theory of Relativity, Wiley.
3. Robert M. Wald, General Relativity, The University of Chicago Press.
4. Charles W. Misner, Kip S. Thorne, John Archibald Wheeler, Gravitation,
W.H. Freeman and Co.

4. Textbooks in geometry :
1. Mikio Nakahara, Geometry, Topology and Physics, Graduate student
series in Physics.
2. Boris Doubrovine, Anatoli Fomenko et Sergeï Novikov, Géométrie
contemporaine – méthodes et applications, MIR. 2

5. Notes available on the web :
Matthias Blau http://www.blau.itp.unibe.ch/Lecturenotes.html

CONTACT
Vadim Briaud (LPENS – Paris) vbriaud@clipper.ens.psl.eu
Marios Petropoulos (CPHT – Ecole Polytechnique) marios@cpht.polytechnique.fr

Accès rapides

Prochain Séminaire de la FIP :
Accéder au programme

Retrouvez toutes les informations pour vos stages :
Stages L3
Stages M1 ICFP

Actualités : Séminaire de Recherche ICFP
du 14 au 18 novembre 2022 :

Retrouvez le programme complet

Contact - Secrétariat de l’enseignement :
Tél : 01 44 32 35 60
enseignement@phys.ens.fr

r>